Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells.

نویسندگان

  • A Steinmetz
  • R Barbaras
  • N Ghalim
  • V Clavey
  • J C Fruchart
  • G Ailhaud
چکیده

Cholesterol efflux was studied in cultured mouse adipose cells after preloading with low density lipoprotein cholesterol. Exposure to complexes containing human apolipoprotein A-IV and L-alpha-dimyristoylphosphatidylcholine (DMPC) as well as to human lipoprotein particles containing apolipoprotein A-IV but not apolipoprotein A-I and particles containing apolipoproteins A-IV and A-I showed that both artificial and native apolipoprotein A-IV-containing particles were able to promote cholesterol efflux at 37 degrees C as a function of time and concentration. The half-maximal concentration was found to be 0.3 X 10(-6) M for apolipoprotein A-IV.DMPC complexes. Binding experiments performed in intact cells at 4 degrees C with labeled apolipoprotein A-IV.DMPC complexes showed the existence of specific binding sites, with a Kd value of 0.32 x 10(-6) M and a maximal binding capacity of 223,000 sites/cell. By cross-competition experiments with labeled and unlabeled complexes containing apolipoprotein A-IV, A-I, or A-II, it appeared that all three apolipoproteins bind to the same cell-surface recognition sites. It is suggested that apolipoprotein A-IV, which is present in the interstitial fluid surrounding adipose cells in vivo at concentrations similar to those required in vitro for the promotion of cholesterol efflux, plays a critical role in cholesterol removal from peripheral cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Training Type on Hepatic Gene expressions of Apolipoprotein A‐I, and Apolipoprotein A‐II among Male Wistar Rats

Introdaction: Lipid metabolism disorders, especially raised levels of cholesterol and triglycerides increases the risk of atherosclerosis. This study aimed to investigate the effect of training type including submaximal continuous and high-intensity interval training on hepatic gene expression of Apolipoprotein A‐I, and Apolipoprotein A‐II in male Wistar rats.   Materials & Methods: This exper...

متن کامل

ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux.

ATP-binding cassette transporter 1 (ABCA1), the defective transporter in Tangier disease, binds and promotes cellular cholesterol and phospholipid efflux to apolipoprotein I (apoA-I). Based on a high degree of sequence homology between ABCA1 and ABCA7, a transporter of unknown function, we investigated the possibility that ABCA7 might be involved in apolipoprotein binding and lipid efflux. Simi...

متن کامل

Mast cell chymase degrades apoE and apoA-II in apoA-I-knockout mouse plasma and reduces its ability to promote cellular cholesterol efflux.

OBJECTIVE Mast cell chymase is a chymotryptic heparin proteoglycan-bound neutral protease that exerts its activity in extracellular fluids. We studied the effect of chymase on the apolipoprotein compositions and the abilities of plasmas from apolipoprotein (apo)A-I-knockout (A-I-KO) and wild-type (C57BL/6J) mice to stimulate efflux of cellular cholesterol from mouse macrophage foam cells. MET...

متن کامل

Characterization of apoA-IV-containing lipoprotein particles isolated from human plasma and interstitial fluid.

Apolipoprotein (apo) A-IV has been proposed to play a role in reverse cholesterol transport. ApoA-IV-containing lipoprotein particles (A-IVLp) were isolated from human plasma and interstitial fluid and characterized by immunoaffinity chromatography. Two major A-IVLp subpopulations, lipoprotein particles containing apoA-IV with apoA-I (LpA-I:A-IV) and lipoprotein particles containing apoA-IV wit...

متن کامل

Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux.

ATP-binding cassette transporter A1 (ABCA1) plays a major role in cholesterol homeostasis and HDL metabolism. ABCA1 mediates cellular cholesterol and phospholipid efflux to lipid-poor apolipoproteins, and upregulation of ABCA1 activity is antiatherogenic. ApoA-I, the major apolipoprotein component of HDL, promotes ABCA1-mediated cholesterol and phospholipid efflux, probably by directly binding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 14  شماره 

صفحات  -

تاریخ انتشار 1990